Low-cost heterogeneous composite photocatalyst consisting of TiO2, kaolinite and MMT with improved mechanical strength and photocatalytic activity for industrial wastewater treatment
Abstract
Keywords
Full Text:
PDFReferences
Szczepanik B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science 2017; 141: 227–239. doi: 10.1016/j.clay.2017.02.029
Lazar AM, Varghese S, Nair SS. Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts 2012; 2(4): 572–601. doi: 10.3390/catal2040572
Shan AY, Ghazi TIM, Rashid SA. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General 2010; 389(1–2): 1–8. doi: 10.1016/j.apcata.2010.08.053
Stathatos E, Papoulis D, Aggelopoulos CA, et al. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials 2012; 211–212: 68–76. doi: 10.1016/j.jhazmat.2011.11.055
Esparza P, Borges ME, Díaz L, et al. Photodegradation of dye pollutants using new nanostructured titania supported on volcanic ashes. Applied Catalysis A: General 2010; 388(1–2): 7–14. doi: 10.1016/j.apcata.2010.07.058
Zhu B, Zou L. Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management 2009; 90(11): 3217–3225. doi: 10.1016/j.jenvman.2009.04.008
Djafer L, Ayral A, Ouagued A. Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology 2010; 75(2): 198–203. doi: 10.1016/j.seppur.2010.08.001
Damodar RA, You SJ, Chou HH. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials 2009: 172(2–3): 1321–1328. doi: 10.1016/j.jhazmat.2009.07.139
Liu L, Liu Z, Bai H, Sun DD. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Research 2012; 46(4): 1101–1112. doi: 10.1016/j.watres.2011.12.009
Bedford NM, Pelaez M, Han C, et al. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. Journal of Materials Chemistry 2012; 22: 12666–12674. doi: 10.1039/C2JM31597A
Tennakone K, Tilakaratne CTK, Kottegoda IRM. Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. Journal of Photochemistry and Photobiology A: Chemistry 1995; 87(2): 177–179. doi: 10.1016/1010-6030(94)03980-9
Tennakone K, Kottegoda IRM. Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films. Journal of Photochemistry and Photobiology A: Chemistry 1996; 93(1): 79–81. doi: 10.1016/1010-6030(95)04141-9
Kumara GRRA, Sultanbawa FM, Perera VPS, et al. Continuous flow photochemical reactor for solar decontamination of water using immobilized TiO2. Solar Energy Materials and Solar Cells 1999; 58(2): 167–171. doi: 10.1016/S0927-0248(98)00200-1
Tennakone K, Tilakaratne CTK, Kottegoda IRM. Photomineralization of carbofuran by TiO2-supported catalyst. Water Research 1997; 31(8): 1909–1912. doi: 10.1016/S0043-1354(97)00031-6
Spurr RA, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry 1957; 29(5): 760–762. doi: 10.1021/ac60125a006
Karunadasa KSP, Manoratne CH. Microstructural view of anatase to rutile phase transformation examined by in-situ high-temperature X-ray powder diffraction. Journal of Solid State Chemistry 2022; 314: 123377. doi: 10.1016/j.jssc.2022.123377
Temenoff JS, Mikos AG. Biomaterials: The Intersection of Biology and Materials Science, 1st ed. Pearson prentice Hall; 2008.
Alkaykh S, Mbarek A, Ali-Shattle EE. Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 2020; 6: e03663. doi: 10.1016/j.heliyon.2020.e03663
Kutláková MK, Tokarský J, Kovář P, et al. Preparation and characterization of photoactive composite kaolinite/TiO2. Journal of Hazardous Materials 2011; 188(1–3): 212–220. doi: 10.1016/j.jhazmat.2011.01.106
Sengyang P, Rangsriwatananon K, Chaisena A. Preparation of zeolite N from metakaolinite by hydrothermal method. Journal of Ceramic Processing Research 2015; 16(1): 111–116.
Meng Y, Gong G, Wei D, Xie Y. In situ high temperature X-ray diffraction study on high strength aluminous porcelain insulator with the Al2O3-SiO2-K2O-Na2O system. Applied Clay Science 2016; 132–133: 760–767. doi: 10.1016/j.clay.2016.07.014
Chakraborty AK. DTA study of preheated kaolinite in the mullite formation region. Thermochimica Acta 2003; 398(1–2): 203–209. doi: 10.1016/S0040-6031(02)00367-2
De Aza AH, Turrillas X, Rodriguez MA, et al. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. Journal of the European Ceramic Society 2014; 34(5): 1409–1421. doi: 10.1016/j.jeurceramsoc.2013.10.034
Kasanen J, Salstela J, Suvanto M, Pakkanen TT. Photocatalytic degradation of methylene blue in water solution by multilayer TiO2 coating on HDPE. Applied Surface Science 2011; 258(5): 1738–1743. doi: 10.1016/j.apsusc.2011.10.028
Al-Rawashdeh NAF, Allabadi O, Aljarrah MT. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 2020; 5(43): 28046–28055. doi: 10.1021/acsomega.0c03608
Dharma HNC, Jaafar J, Widiastuti N, et al. A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes 2022; 12(3): 345. doi: 10.3390/membranes12030345
Karunadasa KSP, Manoratne CH, Pitawala HMTGA, Rajapakse RMG. A potential working electrode based on graphite and montmorillonite for electrochemical applications in both aqueous and molten salt electrolytes. Electrochemistry Communications 2019; 108: 106562. doi: 10.1016/j.elecom.2019.106562
Karunadasa KSP, Rathnayake D, Manoratne C, et al. A binder-free composite of graphite and kaolinite as a stable working electrode for general electrochemical applications. Electrochemical Science Advances 2021; 1(4): e2100003. doi: 10.1002/elsa.202100003
Rathnayake DT, Karunadasa KSP, Wijekoon ASK, et al. Low-cost ternary composite of graphite, kaolinite and cement as a potential working electrode for general electrochemical applications. Chemical Papers 2022; 76: 6653–6658. doi: 10.1007/s11696-022-02314-w
Dlamini MC, Maubane-Nkadimeng MS, Moma JA. The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering 2021; 9(6): 106546. doi: 10.1016/j.jece.2021.106546
DOI: https://doi.org/10.18282/m.v6i1.597
Refbacks
- There are currently no refbacks.