Natural carbon fibres—An overview
Abstract
Keywords
Full Text:
PDFReferences
Li H, Yang Y, Wen Y, Liu L. A mechanism study on preparation of rayon based carbon fibres with (NH4)2SO4/NH4Cl/organosilicon composite catalyst system. Composites Science and Technology 2007; 67(13): 2675–2682. doi: 10.1016/j.compscitech.2007.03.008
Peijs T, Kirschbaum R, Lemstra PJ. Chapter 5: A critical review of carbon fibre and related products from an industrial perspective. Advanced Industrial and Engineering Polymer Research 2022; 5(2): 90–106. doi: 10.1016/j.aiepr.2022.03.008
Minus M, Kumar S. The processing, properties, and structure of carbon fibres. JOM 2005; 57: 52–58. doi: 10.1007/s11837-005-0217-8
Kaur J, Millington K, Smith S. Producing high-quality precursor polymer and fibres to achieve theoretical strength in carbon fibres: A review. Journal of Applied Polymer Science 2016; 133(38). doi: 10.1002/app.43963
Boczkowska A, Kapuściński J, Puciłowski K. Wojciechowski in Composites (Polish). Oficyna Wydawnicza Politechniki Warszawskiej; 2000.
Fejdyś M, Łandwijt M. Technical fibres reinforcing the composite material (Polish). Techniczne Wyroby Włókiennicze 2010; 18(1/2): 12–22.
Huang X. Fabrication and properties of carbon fibres. Materials 2009; 2(4): 2369–2403. doi: 10.3390/ma2042369
Zoltek Toray Group. How is carbon fibre made. Available online: https://zoltek.com/carbon-fibre/how-is-carbon-fibre-made/ (accessed on 5 July 2023).
Souto F, Calado V, Pereira Junior N. Carbon fibre from lignin: A literature review (Portuguese). Matéria (Rio de Janeiro) 2015; 20(1): 100–114. doi: 10.1590/S1517-707620150001.0012
Dobrzański LA. Fundamentals of Materials Science and Metallurgy (Polish). Wydawnictwa Naukowo-Techniczne Publishing; 2006.
Frank E, Steudle LM, Ingildeev D, et al. Carbon fibres: Precursor systems, processing, structure, and properties. Angewandte Chemie International Edition 2014; 53(21): 5262–5298. doi: 10.1002/anie.201306129
Liu J, Bengtsson J, Yu S, et al. Variation in the hierarchical structure of lignin-blended cellulose precursor fibres. International Journal of Biological Macromolecules 2023; 225: 1555–1561. doi: 10.1016/j.ijbiomac.2022.11.211
Wang S, Bai J, Wang Q, et al. Lignin-based carbon fibres: Formation, modification and potential applications. Green Energy & Environment2022; 7(4): 578–605. doi: 10.1016/j.gee.2021.04.006
Xu Y, Liu Y, Chen S, Ni Y. Current overview of carbon fibre: Toward green sustainable raw materials. BioResources 2020; 7234–7259. doi: 10.15376/biores.15.3.Xu
Vinod A, Pulikkalparambil H, Jagadeesh P, et al. Recent advancements in lignocellulose biomass-based carbon fibre: synthesis, properties, and applications. Heliyo 2023; 9: e13614. doi: 10.1016/j.heliyon.2023.e13614
Matsakas L, Raghavendran V, Yakimenko O, et al. Lignin-first biomass fractionation using a hybrid organosolv—Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology 2019; 273: 521–528. doi: 10.1016/j.biortech.2018.11.055
Wen JL, Xue BL, Sun SL Sun RC. Quantitative structural characterization and thermal properties of birch lignins after auto-catalyzed organosolv pretreatment and enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology 2013; 88(9): 1663–1671. doi: 10.1002/jctb.4017
Bengtsson A, Hecht P, Sommertune J, et al. Carbon fibres from lignin—Cellulose precursors: Effect of carbonization conditions. ACS Sustainable Chemistry & Engineering 2020; 8(17): 6826–6833. doi: 10.1021/acssuschemeng.0c01734
Novaes E, Kirst M, Chiang V, et al. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiology 2010; 154(2): 555–561. doi: 10.1104/pp.110.161281
Huang Y, Liu H, Xiao C, et al. Robust preparation and multiple pore structure design of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fibre membrane by melt spinning and post-treatment. Journal of the Taiwan Institute of Chemical Engineers 2019; 97: 441–449. doi: 10.1016/j.jtice.2019.02.010
Jin J, Ogale AA. Carbon fibres derived from wet-spinning of equi-component lignin/polyacrylonitrile blends. Journal of Applied Polymer Science 2017; 135(8): 45903. doi: 10.1002/app.45903
Jia G, Yu Y, Hu Z, et al. Lignin-based carbon fibres: Insight into structural evolution from lignin pretreatment, fibre forming, to pre-oxidation and carbonization. International Journal of Biological Macromolecules 2023; 226: 646–659. doi: 10.1016/j.ijbiomac.2022.12.053
Wang S, Zhou Z, Xiang H, et al. Reinforcement of lignin-based carbon fibres with functionalized carbon nanotubes. Composites Science and Technology 2016; 128: 116–122. doi: 10.1016/j.compscitech.2016.03.018
Paunonen S, Kamppuri T, Katajainen L, et al. Environmental impact of cellulose carbamate fibres from chemically recycled cotton. Journal of Cleaner Production 2019; 222: 871–881. doi: 10.1016/j.jclepro.2019.03.063
Woigk W, Nagel Y, Gantenbein S, et al. Flax-based natural composites hierarchically reinforced by cast or printed carbon fibres. Composites Science and Technology 2022; 226: 109527. doi: 10.1016/j.compscitech.2022.109527
Attia AAM, Antonious MS, Shouman MAH, et al. Processing and fundamental characterization of carbon fibres and cellulose nanocrystals derived from bagasse. Carbon Letters 2019; 29: 145–154. doi: 10.1007/s42823-019-00034-y
Liu HC, Susnjar A, Ho J, et al. Carbon fibre reinforced polymers for implantable medical devices. Biomaterials 2021; 271: 120719. doi: 10.1016/j.biomaterials.2021.120719
Olofin IO, Liu R. The application of carbon fibre reinforced polymer (CFRP) cables in civil engineering structures. SSRG International Journal of Civil Engineering 2015; 2(7). doi: 10.14445/23488352/IJCE-V2I7P101
Wu Y, Gao X, Wu J, et al. Green and low-cost natural lignocellulosic biomass-based carbon fibres—Processing, properties, and applications in sports equipment: A review. Polymers 2022; 14(13): 2591. doi: 10.3390/polym14132591
Aamir M, Tolouei-Rad M, Giasin K, Nosrati A. Recent advances in drilling of carbon fibre—Reinforced polymers for aerospace applications: A review. The International Journal of Advanced Manufacturing Technology 2019; 105: 2289–2308. doi: 10.1007/s00170-019-04348-z
Mayer P, Kaczmar J. Properties and applications of carbon and glass fibres (Polish). Tworzywa Sztuczne i Chemia 2008; 6: 52–56.
Suzuki T, Takahashi J. Prediction of energy intensity of carbon fibre reinforced plastics for mass-produced passenger cars. In: Proceedings of The Ninth Japan International SAMPE Symposium; 29 November–2 December 2005; Tokyo. pp. 14–19.
Aragão Almeida Júnior S, Parvin A. Reinforcement of new and existing reinforced concrete beams with fibre-reinforced polymer bars and sheets—A numerical analysis. Structures 2002; 40: 513–523. doi: 10.1016/j.istruc.2022.04.046
Kossakowski PG, Wciślik W. Fibre-reinforced polymer composites in the construction of bridges: Opportunities, problems and challenges. Fibres 2002; 10(4): 37. doi: 10.3390/fib10040037
DOI: https://doi.org/10.18282/ims.v6i1.576
Refbacks
- There are currently no refbacks.
